Road Pavement Forum 2019 Pretoria

Self-Healing Materials

Theresa Bernadette George November 2019

our future through science

Introduction

Research & Development: Self-Healing Materials

- Strategic objectives of Transport Infrastructure Engineering unit
 - Provide practical, innovative and cost-effective R&D based solutions that address the current and future pavement infrastructure needs of the country
- Overall strategic objectives of the Smart Logistics & Infrastructure cluster (Built Environment unit):
 - Key Initiatives: (a) Smart infrastructure and (b) Industrialisation of the construction process

Self-Healing Materials: Research Objective & Impact

1. Research Objective

Self-healing pavement system capable of identifying and repairing damage:

- Automatic initiated response to damage or failure
- **Reduce** level of damage and **extend** or **renew** functionality and lifetime of pavement

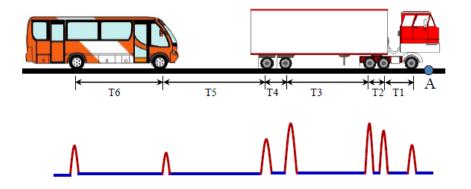
2. Impact

• Significant economic, social and environmental benefits

Cost per Kilometre (km): Repair and Reseal of Provincial Roads		
14 mm cape seal + 1 slurry	14 mm + 7 mm double seal	UTRCP
R 1 100 000	R 1 150 000	R 1 500 000

Structural Design Period (20-25 yrs)

Self-Healing Materials in Focus

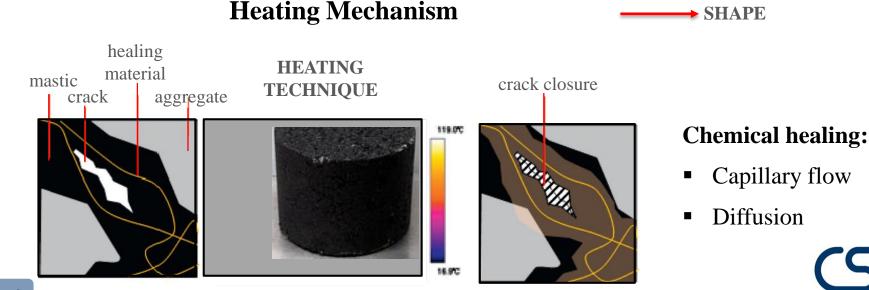

1. Self-healing asphalt

- Advanced heating technology
- Rejuvenator encapsulation
- Nanofillers
- 2. Self-healing concrete
 - Bioconcrete
 - Nano materials

Self-Healing Asphalt Pavements

Current Research: Autonomous Self-Healing Properties of Asphalt

Rest times between vehicle axles


Test without rest times

Mechanism

- 1. Stress relaxation (time-dependant) in viscoelastic material
- 2. Chemical healing across micro crack surfaces wetting & diffusion
- Advantage: recovery of stiffness and strength, increased fatigue life
- Disadvantage: Healing is slow at ambient temperature

Self-Healing Asphalt Pavements

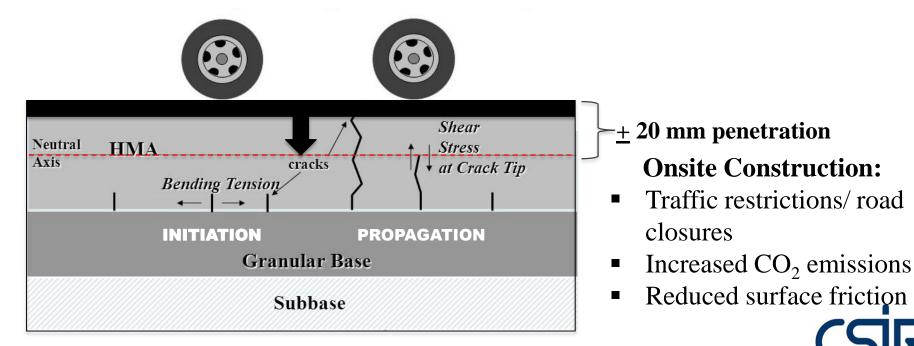
Current Research: Enhancement of autonomous healing properties through heating the asphalt material containing appropriate healing agents **TYPE**

our future through science

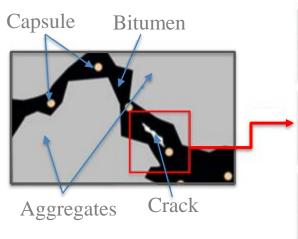
SIZE

SHAPE

Self-Healing Asphalt Pavements


Futuristic Approach

- Self-healing process is still in its early stage of development and demonstration of its full potential is currently underway:
 - Ideal healing agent for optimal healing efficiency
 - Optimal heating temperature
 - Optimal heating speed
 - Initiation point of heating
 - Multiple heating approach in combination with binder rejuvenation



Binder Rejuvenation

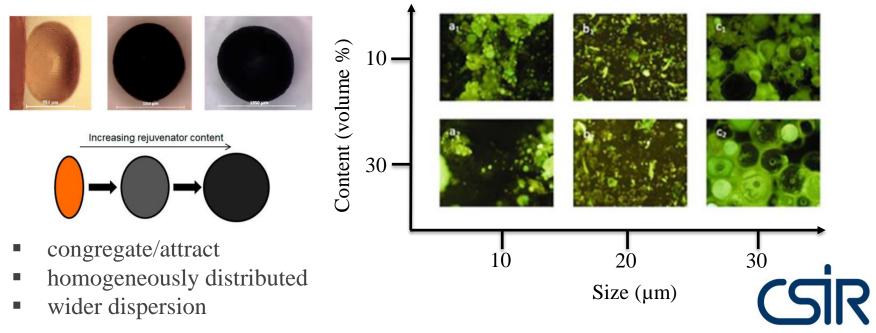
Conventional Surface Course Rejuvenation

Self-Healing Mechanism

Crack opening

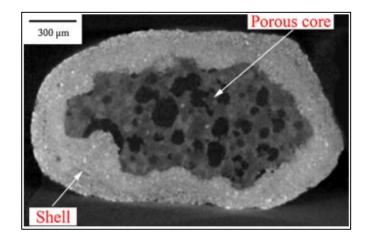
Rejuvenator

Capsule fracture & rejuvenator release


Rejuvenator & Bitumen

Bitumen rejuvenation via diffusion

Current Research: Thermal and Mechanical Stability


1. Capsule size and content

our future through science

2. Capsule strength

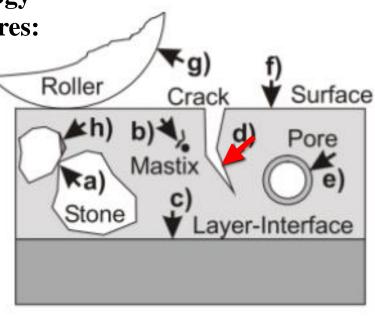
Engineer the material with **different threshold values for breakage**: design time of breakage such that not all the chemicals are released at the same time.

Max. resistance Continuous of capsule > loading cycles Higher traffic maximum stress AGEING induced load results in rupture caused by **PROCESS** of capsule and stresses on vehicle passing capsule release of post rejuvenator construction

Current Approach

- Advantage: Rejuvenation of aged binder
- Disadvantage: Once-off mechanism i.e. Capsule cannot be replenished upon release of healing material

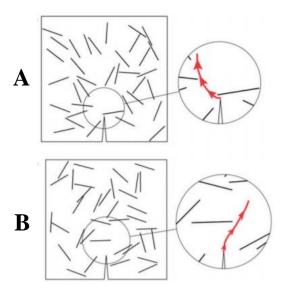
Futuristic Approach


- Self-healing process is still in its early stage of development and demonstration of its full potential is currently underway:
 - Appropriate content of capsules to achieve optimum dispersion
 - Multiphase self-healing process

Nanoparticles

Focus areas for nanoscience and technology with respect to asphalt pavement structures:

- a. Bond between stones
- b. Mastic
- c. Bond between layers
- d. Self-repair (healing)
- e. Oxidation of binder films and binder inhomogeneity
- f. Surface properties
- g. Anti-adhesion surface for rollers during compaction
- h. Bond, adhesion between stone and mastic



Nanoparticles

Future Research: Nanofillers - Nanoclay

Self-healing mechanism:

Crack deflection & pinning

- A Crack deflection due to nanoclay in path of crack propagation
 - Energy absorption by deflected crack results in delay of crack growth
- B Absence of nanoclay near crack tip results in more space for crack to propagate easily

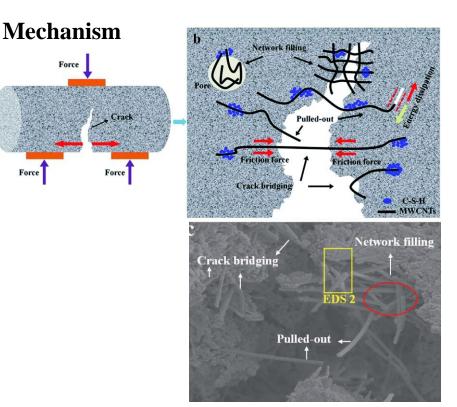
Healing dependant on **dispersion** and **orientation** of clay particles around crack tip

Nanofillers

Futuristic Approach

- Detailed investigations to determine most adequate methodology to obtain good dispersion
- Long-term effect of nanoclay particles on the performance of self-healing asphalt mixtures

Self-Healing Concrete Pavements

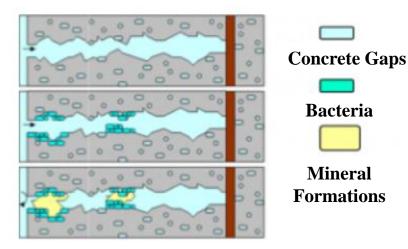

Carbon nanotubes (CNTs)

CNT's – ideal nano reinforcement materials due to distinct properties of atomic structure:

- high aspect ratio
- small size

distributed on a much finer scale

- Iow density
- unique physical and chemical properties
 - Force applied nanotube bends; Force removed - recovers original shape
 - Interfacial interactions between CNTs and cement hydrates produce high bond strength-new composite material equivalent to rebar-frame reinforced concrete

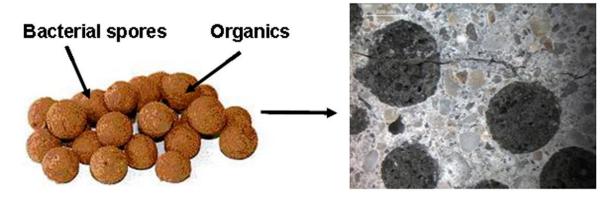

Self-Healing Concrete

Bioconcrete: Direct Application of Bacterial Spores

Use of bacteria that thrive in alkaline environments:

- Bacteria of genus Bacillus
- Spores with extremely thick walls remain intact > 50 years
- Suitable chemical precursor "calcium lactate"

Self-Healing Mechanism



Self-healing mechanism of **unprotected bacterial spores** embedded in concrete matrix was restricted to approx. two months

Self-Healing Concrete

Bioconcrete: Encapsulated Bacterial Spores

Bacterial spores and chemical precursor (calcium lactate) are packed in porous expanded clay particles and added to the concrete mixture.

Protection of bacterial spores within porous light weight aggregates extends functionality period when embedded in concrete matrix

Self-Healing Concrete

Bioconcrete: Cultured Bacteria

Preparation of Cultural Bacteria Preparation of nutrient Bacteria casted broth for further on nutrient agar growth & added in plate distilled water Addition of single 3rd day 7th day Autoclaving at 121C colony of bacterial Incubation at 37C culture in nutrient Storage in refrigerator 4C broth Periodic contamination 14th day 28th day checks

Self-Healing Concrete Pavements: Challenges

- Selection and isolation of specific Bacillus species from soil samples in which many other spores of Bacillus species predominate
- Costly production process of calcite precipitate
- Preparation of cultural bacteria appropriate nutrient medium, temperature, humidity for germination and growth

Thank you

our future through science