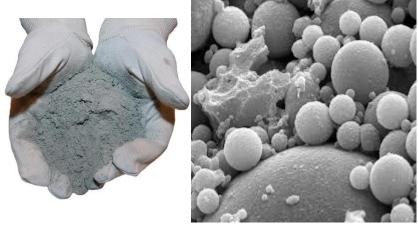
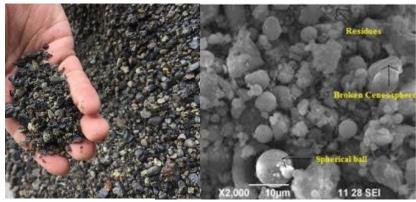


The use of coal ash in road construction

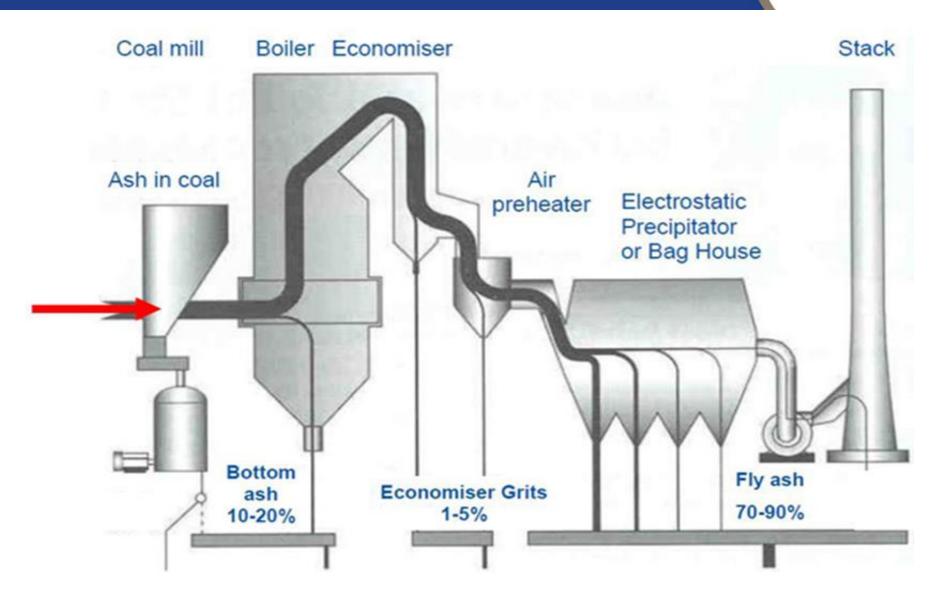
18th August 2021

Kelley Reynolds-Clausen


reynolka@eskom.co.za

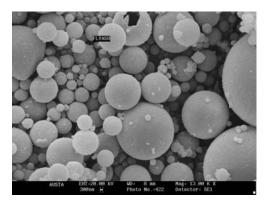

011 629 5028

082 880 5642



- Grey powder formed by inorganic matter after combustion of coal.
- Fly ash
 - Small, fine particles (0.01-100µm diameter)
 - 80-90%
 - Spherical glass aluminosilicate
 - Captured by ESP or bag filters
- Coarse / Bottom ash
 - Heavier particles
 - 10-20%
 - Base of the boiler
 - Collected by submerged scraper conveyor

- Obtains physical and mineralogical properties from
 - Parent coal
 - Combustion conditions
 - Temperature
 - Air : fuel
 - Milling
 - Rate of combustion
 - Emission control techniques
 - Climate


• Classified as Class C (calcareous) or Class F (siliceous) ashes

Properties	Fly Ash Classes	
Silicon dioxide, aluminium oxide, iron oxide	Class F	Class C
$(SiO_2 + Al_2O_3 + Fe_2O_3)$, min, wt. %	70,0	50,0
Sulphur trioxide (SO ₃), max, wt. %	5,0	5,0
Moisture content, max, wt. %	3,0	3,0
Loss on ignition, max, wt. %	6,0	6,0

- SA has mostly sub-bituminous coal forming ash which is
 - Highly alkaline (pH 11.5-12)
 - Low iron content
- Eskom ash is unique worldwide
 - Size and pressure of the boilers
 - Combustion techniques
 - Poor quality coal used
 - Ash
 - Highly alkaline
 - Low sulphur
 - Low carbon
 - Pozzolanic
- Beneficiation relies on one or more of the properties
 - Spherical shape
 - pH
 - Pozzolanic Reactivity
 - Variety of particle sizes

5

Research

- 30 plus years
- Several different phases
- Ash Utilisation
- Ash Applications
- Ash Beneficiation

what are other words for utilisation? use, usage, employment, utilization, exercise, application, operation, practice, function, enjoyment

🔰 Thesaurus.plus

Acknowledge Dr Martin Mngangira and his team from the CSIR for the following information collected for the Eskom funded **ASH IN ROAD CONSTRUCTION** project.

- Generate additional knowledge through a detailed research programme in the use of fly ash as a substitute for conventional materials for road construction
- Based on the findings, develop toolkit/s with guidance for the utilisation of the ash, in terms of technical and environmental considerations:
 - to provide road industry with the most appropriate tool through which they can make informed decisions.

Road Construction – Eskom CSIR research

Eskom

Fly ash utilisation in road construction

Basic laboratory studies

Fly ash characterisation

Detailed laboratory studies

Variability testing

Strength behaviour

Chemical and environmental

Trial sections

Monitor response due to HVS trafficking

Long-term performance assessment

Pavement Design

Technical Guideline for the use of Fly Ash in Road Construction

India

 Fly ash mandatory utilisation area extended from 100 km to 300 km -2016

(₦) Eskom

- Every construction agency engaged in the construction of buildings within a radius of 300 km from power plant was required to use only fly ash-based products
- Till 100 km power plants will bear the cost, b/w 100-300 km it should be shared equally

India Established specifications

Use of fly ash in road and embankments construction (IRC:58:2001).

No.	Parameter	Fly Ash	Natural Soil	
1	Bulk Density (gm/cc)	0.9-1.5	1.3-1.8	
2	Shrinkage Limit	Higher	Could be lower	
3	Grain Size	Major fine sand / silt &	Sand / silt / clay size	
		small per cent of clay size	particles depending upon	
		particles	type of soil	
4	Clay (per cent)	Negligible	Depends on type of soil	
5	Free Swell Index	Very low	Variable	
6	Classification (Texture)	Sand silt to silty loam	Sandy to clayed silty loam	
7	Water Holding Capacity	40-60	05-50	
	(WHC) (per cent)			
8	Porosity (per cent)	30-65	25-60	
9	Surface Area (m ² /kg)	500-5000	-	
10	Lime reactivity (MPa)	1-8	Variable	

Engineering Properties

_	Parameter	Fly Ash	Sand	Silt	Clay
Spe	cific gravity	1.9-2.55	2.65-2.7		
Plasticity index		NP	NP	NP to 7	>17
Cor	npaction test Maximum Dry	0.90-1.60	1.75-1.84	1.52-2.00	1.45-1.8
Der	nsity (gm/cc)				
Opt	imum moisture content (%)	38-18.0	15-9	18-10	30-15
Ang	le of internal friction (Ø)	30°-40°	28°-45°	25°-35°	30°-60°
Coł	nesion (kN/m²)	Negligible	0	10-25	30-60
Cor	npression index	0.05-0.4	-	0.05-0.15	0.30-1.50
Per	meability (cm/sec)	10 ⁻³ -10 ⁻⁵	10 ⁻² -10 ⁻⁴	10 ⁻⁵ -10 ⁻⁷	≤10 ⁻⁷

(Eskom

India Engineering properties

To be evaluated before using fly ash for **<u>embankment construction</u>** (IRC, 2001; FARC, 2015):

- Particle size distribution;
- maximum dry density;
- Shear strength;
- Permeability, and
- Drainage properties.

Eskom

India

- most often considered to be a bitumen extender, with the extent of replacement varying between replacements of 10% to 60% of bitumen
- considered to replace fine aggregate or common filler portion of the asphalt mixture.

Eskom

Base courses or wearing courses for heavy traffic corridors or for low traffic volume roads

- Improving workability of concrete;
- Increase in the durability of concrete mixture;
- Reduction in alkali-aggregate reaction;
- Reduction in thermal cracking;

Australia How are they doing it

Developed guidelines for the use of coal combustion products: ADAA

Grades of fly ash as defined by the Australian Standard AS3582.1 (fine, medium and coarse)

Grade	Fineness by mass % passing 45µ sieve	Loss of ignition (% maximum)	Moisture content (% maximum)	SiO₂ content (% maximum)
Fine	75	4	1	3
Medium	65	5	1	3
Coarse	55	6	1	3
Test Method	AS3583.1	AS3583.3	AS3583.2	AS3583.8

Australia

- Ingredient in soil modification and/or stabilisation
- Component in road bases, subbases, and pavement
- Where settlement of the sub grade is of concern in embankments on soft or poor ground conditions
- Aggregate in road bases, subbases, and pavement
- Engineering Properties

MDD (t/m ³)
Void ratio
OMC (%)
Breakage Index, BI(%)
Fines content after compaction (%)
CBR (%)
UCS at OMC (kPa)
Collapse Potential (%)

Eskom

Europe

- Soil beneficiation with fly ash (EN 14227-13)
- Fly ash bound mixtures (EN 14227 part 3)
- Fly ash for hydraulically bound mixtures (EN14227 part 4)
- Use in hydraulic road binders the requirements of the European standard EN 13282

(Eskom

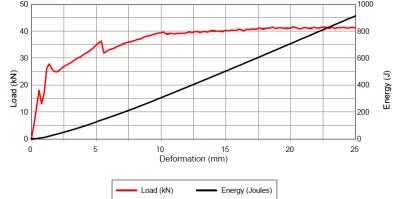
 The requirements for fly ash are based on the definitions given in the cement standard EN 197-1

Applications of national and / or country specific regulations of road construction authorities

USA The categories relating to road applications are:

(#)

Eskom


- I. Use in concrete products;
- II. Embankments;
- III. Road base and sub-base;
- IV. Soil stabilization;
- V. Mineral Filler in asphalt and;
- VI. Aggregate.

ARC Engineering Underground Road Construction

- 1. Utilisation of Activated FA, slag and water 80MPa in 28 days.
 - Max of an 8 hour delay for placement.
- 2. Shotcrete 1-1.5 MPa in 3 sec

This is the same base material but varying activators!

- Utilised 50% underground materials
- Transported the activator only
- Decreased costs by 75%
- Decreased CO₂ production by 350kg/m placed.
- Low wear
- 15-16MPa flexural strength
- 50MPa compressive strength

Eskom

ARC Engineering Soil stabilisation

Using:

- 2% OPC
- 0.5% Activator
- 97.5% dumped coal ash

Formed stabilised area: 2.5MPa after 24 hours 5MPa after 28 days

ARC Engineering Pavers

Using:

Fly Ash, Aggregate, Inorganic polymer and activator catalyst

Formed:

- 15 22MPa after 24 hours
- 40 45MPa after 28 days

50% decrease in cost.

ARC Engineering 0% cement concrete

Using:

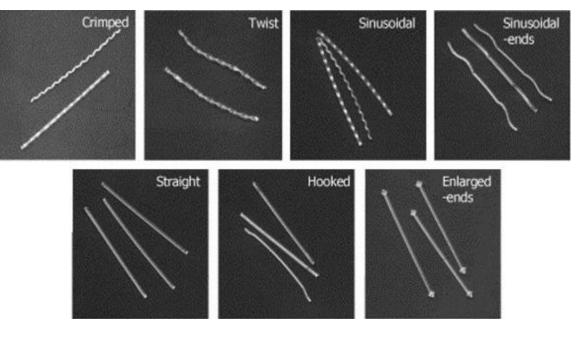
Fly Ash, slag base, NaOH (dangerous)

Offered:

Decreased shrinkage - 10% of normal

51MPa compressive strength and 4.2MPa flexural strength after 28 days.

Decreased cost of materials by 30% and labour by 25%.


ARC Engineering Test road – on going project

To form a 1km rigid pavement. With concrete, base and sub base layers

Using:

Dumped Ash, slag base, macro fibres to replace metal reinforcing.

Kelley Reynolds-Clausen

reynolka@eskom.co.za

011 629 5028

082 880 5642

THANK YOU