PG Binder Specification SATS 3208 to SANS 4001: BT10

Steph Bredenhann Naidu Consulting 30 May 2024

- 1. CAPSA feedback
- 2. Current BT1 (and TG1)
- 3. Revisit PG environment
- 4. Revisit PG Specification SATS
- 5. Status SATS 3208 to 4001:BT10
- 6. Intended workshop
- 7. View on Intermediate temperature
- 8. Temperature distributions
- 9. Temperature databases
- 10. Ageing of a 50/70

CAPSA 2023 FEEDBACK

• Conference Theme

Leading-edge technology to underpin sustainable roads

- PB Binder Specification is an essential contribution to leading-edge technology
- It addresses the performance requirements to ensure longevity of roads
- First step to fit for purpose

CAPSA 2023

- C1 Masterclass on PG
- ✓ C2 Speciality Session
- ✓ F2 SPG
- ✓ CAPSA Resolution

CAPSA resolution 4

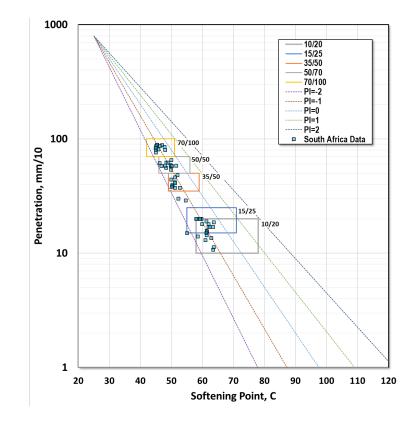
SABITA to task the Bitumen Performance Grade (PG) implementation group to address issues relating to maximum temperature definition, fatigue parameters and optimizing rheology testing

> 90% of SA PG based on USA
> We relied on their research

CONVENTIONAL BT 1 EMPIRICAL SPECIFICATION

No environment

No traffic



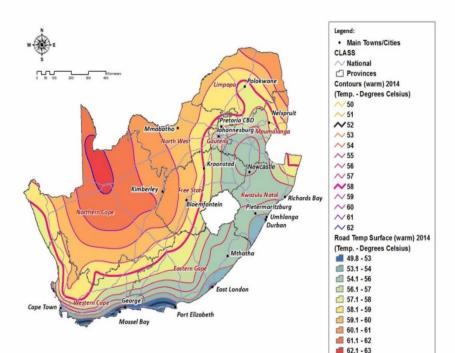
•Penetration

•Softening Point

Viscosity

SANS 4001:BT1				
Pen		SP		
10	20	58	78	
15	25	55	71	
35	50	49	59	
50	70	46	56	
70	100	42	51	

PG TEMPERATURE DEFINITION


Drg.1106

- T_{MAX} is the 7-day average at 20 mm depth in the layer at 97.5 % confidence level
- $T_{MIN} = T_{MAX} 80^{\circ}C (UTI = 80^{\circ}C)$

must be maintained to force T_{IT} in low 20's to protect against fatigue

• $T_{IT} = (T_{MIN} + T_{MAX})/2 + 4^{\circ}C$

Note: fatigue is not specified but isotherms at T_{IT} is <u>reported</u> to be used in research, more on this later

Dangerous (lazy) to just read from graph, there are miniand micro-temperature zones, rather be site specific

	Traffic class				
Test Property	S	Н	V	Е	
Max pavement design temperature (°C)	T _{max}			Test Method	
Minimum grading temperature (°C)		T _{min}	1		
Tests	on Orgin	al Binde	er		
G* and δ at [(T _{max} + T _{min})/2+4]°C	Compulsory report only			ASTM D7175	
Viscosity at 165°C (Pa.s) ≥ 30 sec ⁻¹	≤ 0.9			ASTM D4402	
Flash Point (°C)	≥ 230			ASTM D92b	
Tests on Binder After RTFO Ageing (ASTM D2872)					
Mass Change (% m/m)	≤ 1.0			ASTM D2872 / TG1 MB3	
J _{nr} at T _{max} (kPa⁻¹)	≤ 4.5	≤ 2.0	≤ 1.0	≤ 0.5	ASTM D7405
Ageing ratio [G* _{RTFO} / G* _{Original}]	≤ 3.0			ASTM D7175	
After RTFO & PAV Ageing (ASTM D6521)					
Maximum creep stiffness tested at temperature [S (60s) ≤ 300 MPa]	T _{min} + 10⁰C		ASTM D6648		
Minimum m-value tested at temperature [m (60s) ≥ 0.300]	T _{min} + 10⁰C				
$\Delta T_{c} (^{\circ}C) = T_{c,S} - T_{c,m}$	≥-5			ASTM D7643	
Ageing ratio [G* _{PAV} / G* _{Original}]	≤ 6.0			ASTM D7175	

PG Binder-grades

PG58-22, PG64-16, PG70-10

Traffic classes

S = standard, H = High V = Very high, E = Extreme

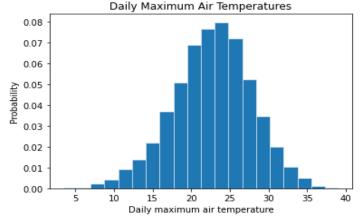
Design	Traffic Speed (km/h)			Asphalt mix	
traffic (million E80)	< 20	20 - 80	>80	design level	
< 0.3	S	S	S	IA	
0.3 - 3	Н	S	S	IB	
3 - 10	V	Н	S	11	
10 - 30	Е	V	Η	II	
30 - 100	E	E	V		
>100	Е	E	E	III	

STATUS SATS 3208 TO SANS 4001:BT10

- RPF Implementation Committee establish 2020, chaired by SJB
 - Meet when required to address implementation issues
- Request for transition made to SABS in 2022
- **BT10 WG** managed by SABITA now the lead group
- SABS Committee chaired by Georges Mturi
- Report by BT10 WG submitted to SABS WG
- Draft of BT10 submitted to SABS WG
- Detailed feedback received from SABS WG, most incorporated in draft BT10

Way forward workshop with industry with international review

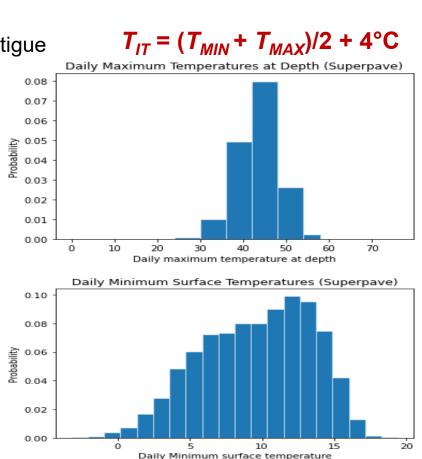
WHY SATS 3208 TO SANS 4001:BT10


- **SATS 3208** a technical specification, meant to guide test phase
 - Implementation voluntary
- **SANS 4001:BT10** the national specification

It is not meant to develop a new specification; it is a transition from a

technical specification to national specification

INTENDED WORKSHOP



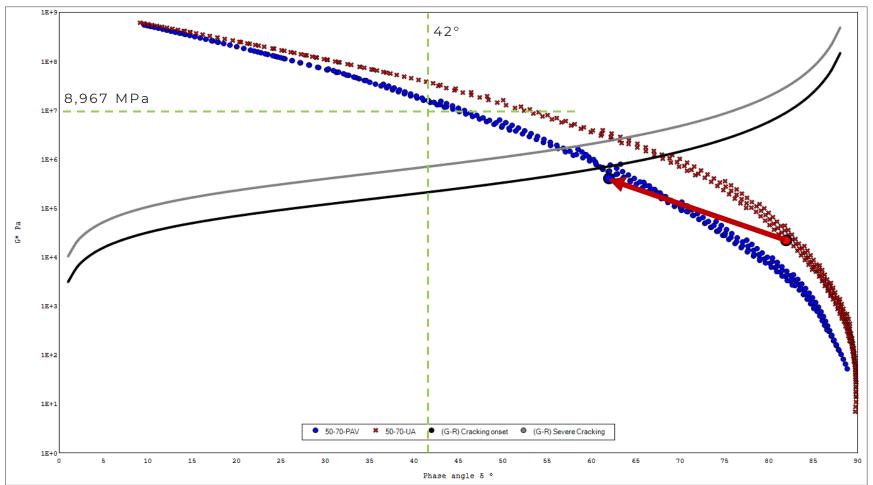
- Address CAPSA Resolution 4
 - T_{MAX}, Fatigue and "optimizing rheology testing"
- Address issues from SABS WG feedback
 - ▶ Viscosity 0,9 Pa.s @ 165° C and ≥ 30 s⁻¹
 - ➤ T_{MIN}, ΔTc
 - Testing time in refinery/ship (especially after PAV)
 - Site QA/QC
 - 80% of bitumen import goes to surfacing seals, PG drives asphalt hard binders against rutting
 - Research done binders that are not available anymore

INTERMEDIATE TEMPERATURE

- Intermediate temperature, T_{IT} definition for fatigue
- USA: $G^* \cdot \sin \delta \le 5000 \text{ kPa} @ T_{IT}$
- Revised to:
 - \succ G^{*}·sinδ ≤ 6000 kPa @ T_{IT}
 - If δ > 42°C
- Glover-Rowe now being considered
 - > G-R = G*($\cos^2\delta$)/sin δ
 - ≻ G-R ≤ 5000 kPa @ T_{IT}
- For SA perhaps we need to consider

 \succ $T_{IT} = ?? °C$

TEMPERATURE COMPARISON


- CAPSA paper on temperature
- SA data very expensive
- CSIR research limited and old
- Investigated NOOA and MERRA
- Max temperature at depth compared reasonably well
- Min surface temperature
- Degree Day concept not much different from max temperature at 20 mm depth

	DESCRIPTION	STAT- TEMP MERRA	STAT- TEMP NOOA	Thermal- Pads S.A. (Viljoen)	STAT- TEMP MERRA Degree day
Pretoria	Maximum temperature at 20 mm °C	59.80	57.86	56.88	59.59
	Minimum surface temperature °C	2.53	0.93	1.22	-0.31
Cape Town	Maximum temperature at 20 mm °C	54.32	54.28	53.19	52.68
	Minimum surface temperature °C	8.23	5.02	3.67	1.75
Pietermaritzburg (Cedara)	Maximum temperature at 20 mm °C	56.97	56.14	52.95	54.75
	Minimum surface temperature °C	0.13	0.93	0.60	-3.11

AGEING OF 50/70

Questions?

NAIDUCONSULTING.COM