Roads Pavement Forum April 2025

SABITA: Manual 19

Guidelines for the design, manufacture and construction of bitumen-rubber asphalt wearing courses

Steph Bredenhann Naidu Consulting (Pty) Ltd

What does Manual 19 address?

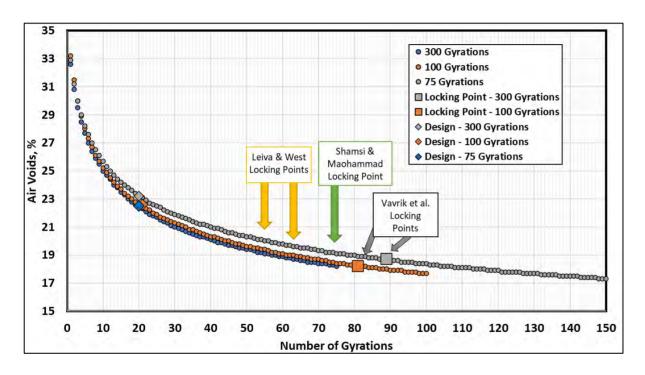
- <u>Bitumen-Rubber</u> Asphalt (the BRA part)
- Continuously graded mixes (BRACG)
- Gap-graded asphalt (BRAGG)
- Open-graded asphalt (BRAOG)
- <u>Semi-Open-BRA (BRASO</u>)
- <u>BR U</u>ltra-<u>Thin Porous</u> <u>Surfacings</u> (BRUTPS)
- What else??

Current design

- Marshall compaction and design method
 - No direct translation to gyratory!!
 - How to measure density: Direct != SSD != Corelock
- Is it adequate?
- How does compaction relate to locking point
 - and crushing of stone-to-stone rocks

New (updated) Design Method

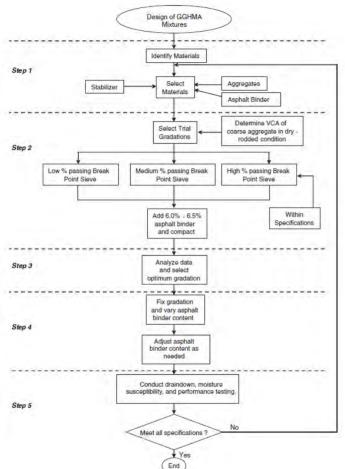
- It is not "*rock*"-et science
- Current load design levels very high
 - Are traffic levels in slow lane realistic?
 - What is maximum no of trucks (E80's) in a slow lane?
 - NOT Man19 discussion but take note
- Environmental requirements (noise, drainage, etc)
- Determine Locking Point (LP)
- etc!!



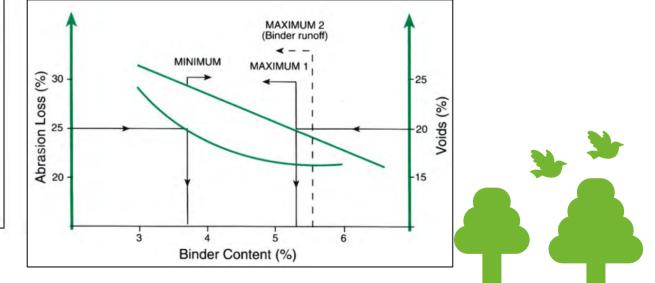
What is Locking Point (LP)

- Various definitions we use Varvik
 - $_{\circ}$ Gyrations = ±90 at LP
- LP important for stone-to-stone contact mixes
 - BRAGG, BRASO, BRAOG, BRUTPS
- Where does stone break-down start perhaps 50 gyrations?
- Do not compact beyond break-down

Locking Point


Vavrik LP is first gyration at which the specimen sample height remains the same for three consecutive gyrations

L&W locking point considerably lower

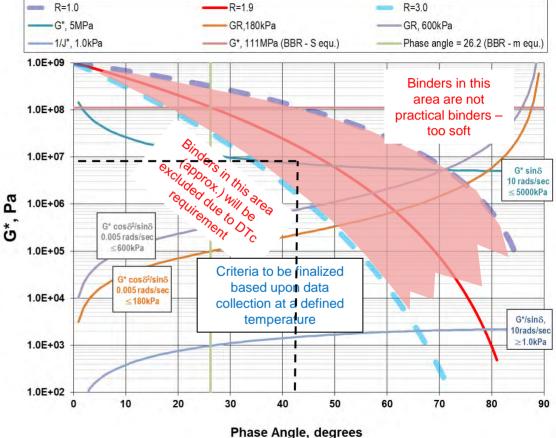

What needs updating?

- Bitumen-rubber binder constituency and behaviour
 - A-R1 vs A-R2
- Mix design
 - Absorption of rubber with time (digestion in SA)
 - Differences between A-R1 and A-R2
- Construction
 - e.g. how to handle viscosity changes with time?
- QA/QC and more

Mix Design

- Follow principles in NCHRP 673
- And NAPA documentation

end


¥

Cracking parameters and implementation thoughts in SA consider in Black Space R=1.0 R=1.9 R=3.0

- Low temperature (PAV)
 - BBR parameters converted to G* and phase angle, 111 MPa and 26.2°
 - R at ∆Tc = 0 is 1.9
- Durability cracking
 - ΔTc -5 limit on PAV
 - This limits R to be greater than about 3.0 (depends how determine R)
 - Excludes lower part of Black Space (higher part of Black Space – not practical binders)
- Combination of these parameters limit region in Black space that binders must fall into (green area) – not considering PmB
- Intermediate area
 - Need to be below G-R and orginal fatigue line effectively controlled by aging ratio
 - G* is typically about 7MPa (R=2.2 when Gg=9GPa, $\delta \approx 44.5$) for most practical binders at intermediate temperature when G*.sin δ = 5MPa
 - Effectively controlled by aging limits on orginal to PAV (aging control also on orginal to PAV)
 - Note tests at different frequencies accounts in part for where on curve

